سفارش تبلیغ
صبا ویژن
پرخوری مایه دوری از خداوند است که به سرپیچی کردنها نیرو می بخشد؛ پس شکمهایتان را پر نکنید که نورحکمت در سینه هایتان خاموش می شود [پیامبر خدا صلی الله علیه و آله]
3  بسیجیان متخصص و متخصصان بسیجی  4

نیروگاه ا تمی چگونه کار میکند؟ (یکشنبه 86/8/13 :: ساعت 1:19 صبح )

ساختار نیروگاه های اتمی جهان و نیز شرح مختصری درباره طرز غنی سازی اورانیوم

 

مطالبی در مورد ساختار نیروگاه های اتمی جهان و نیز شرح مختصری درباره طرز غنی سازی اورانیوم و یا سنتز عنصر پلوتونیوم :

برحسب نظریه اتمی عنصر عبارت است از یک جسم خالص ساده که با روش های شیمیایی نمی توان آن را تفکیک کرد. از ترکیب عناصر با یکدیگر اجسام مرکب به وجود می آیند. تعداد عناصر شناخته شده در طبیعت حدود
۹۲
عنصر است.

هیدروژن اولین و ساده ترین عنصر و پس از آن هلیم، کربن، ازت، اکسیژن و... فلزات روی، مس، آهن، نیکل و... و بالاخره آخرین عنصر طبیعی به شماره
۹۲، عنصر اورانیوم است. بشر توانسته است به طور مصنوعی و به کمک واکنش های هسته ای در راکتورهای اتمی و یا به کمک شتاب دهنده های قوی بیش از ۲۰
عنصر دیگر بسازد که تمام آن ها ناپایدارند و عمر کوتاه دارند و به سرعت با انتشار پرتوهایی تخریب می شوند. اتم های یک عنصر از اجتماع ذرات بنیادی به نام پرتون، نوترون و الکترون تشکیل یافته اند. پروتون بار مثبت و الکترون بار منفی و نوترون فاقد بار است.

تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبی (جدول مندلیف) مشخص می کند. اتم هیدروژن یک پروتون دارد و در خانه شماره
۱ جدول و اتم هلیم در خانه شماره ۲، اتم سدیم در خانه شماره ۱۱ و... و اتم اورانیوم در خانه شماره ۹۲ قرار دارد. یعنی دارای ۹۲
پروتون است.

ایزوتوپ های اورانیوم

تعداد نوترون ها در اتم های مختلف یک عنصر همواره یکسان نیست که برای مشخص کردن آنها از کلمه ایزوتوپ استفاده می شود.

بنابراین اتم های مختلف یک عنصر را ایزوتوپ می گویند. مثلاً عنصر هیدروژن سه ایزوتوپ دارد: هیدروژن معمولی که فقط یک پروتون دارد و فاقد نوترون است. هیدروژن سنگین یک پروتون و یک نوترون دارد که به آن دوتریم گویند و نهایتاً تریتیم که از دو نوترون و یک پروتون تشکیل شده و ناپایدار است و طی زمان تجزیه می شود.

ایزوتوپ سنگین هیدروژن یعنی دوتریم در نیروگاه های اتمی کاربرد دارد و از الکترولیز آب به دست می آید. در جنگ دوم جهانی آلمانی ها برای ساختن نیروگاه اتمی و تهیه بمب اتمی در سوئد و نروژ مقادیر بسیار زیادی آب سنگین تهیه کرده بودند که انگلیسی ها متوجه منظور آلمانی ها شده و مخازن و دستگاه های الکترولیز آنها را نابود کردند.

غالب عناصر ایزوتوپ دارند از آن جمله عنصر اورانیوم، چهار ایزوتوپ دارد که فقط دو ایزوتوپ آن به علت داشتن نیمه عمر نسبتاً بالا در طبیعت و در سنگ معدن یافت می شوند. این دو ایزوتوپ عبارتند از اورانیوم
۲۳۵ و اورانیوم ۲۳۸ که در هر دو ۹۲ پروتون وجود دارد ولی اولی ۱۴۳ و دومی ۱۴۶ نوترون دارد. اختلاف این دو فقط وجود ۳ نوترون اضافی در ایزوتوپ سنگین است ولی از نظر خواص شیمیایی این دو ایزوتوپ کاملاً یکسان هستند و برای جداسازی آنها از یکدیگر حتماً باید از خواص فیزیکی آنها یعنی اختلاف جرم ایزوتوپ ها استفاده کرد. ایزوتوپ اورانیوم ۲۳۵ شکست پذیر است و در نیروگاه های اتمی از این خاصیت استفاده می شود و حرارت ایجاد شده در اثر این شکست را تبدیل به انرژی الکتریکی می نمایند. در واقع ورود یک نوترون به درون هسته این اتم سبب شکست آن شده و به ازای هر اتم شکسته شده
۲۰۰ میلیون الکترون ولت انرژی و دو تکه شکست و تعدادی نوترون حاصل می شود که می توانند اتم های دیگر را بشکنند. بنابراین در برخی از نیروگاه ها ترجیح می دهند تا حدی این ایزوتوپ را در مخلوط طبیعی دو ایزوتوپ غنی کنند و بدین ترتیب مسئله غنی سازی اورانیوم مطرح می شود.

ساختار نیروگاه اتمی

به طور خلاصه چگونگی کارکرد نیروگاه های اتمی را بیان کرده و ساختمان درونی آنها را مورد بررسی قرار می دهیم.

طی سال های گذشته اغلب کشورها به استفاده از این نوع انرژی هسته ای تمایل داشتند و حتی دولت ایران
۱۵ نیروگاه اتمی به کشورهای آمریکا، فرانسه و آلمان سفارش داده بود. ولی خوشبختانه بعد از وقوع دو حادثه مهم تری میل آیلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبیل (Tchernobyl) در روسیه در ۲۶ آوریل ۱۹۸۶
، نظر افکار عمومی نسبت به کاربرد اتم برای تولید انرژی تغییر کرد و ترس و وحشت از جنگ اتمی و به خصوص امکان تهیه بمب اتمی در جهان سوم، کشورهای غربی را موقتاً مجبور به تجدیدنظر در برنامه های اتمی خود کرد.

نیروگاه اتمی در واقع یک بمب اتمی است که به کمک میله های مهارکننده و خروج دمای درونی به وسیله مواد خنک کننده مثل آب و گاز، تحت کنترل درآمده است. اگر روزی این میله ها و یا پمپ های انتقال دهنده مواد خنک کننده وظیفه خود را درست انجام ندهند، سوانح متعددی به وجود می آید و حتی ممکن است نیروگاه نیز منفجر شود، مانند فاجعه نیروگاه چرنوبیل شوروی. یک نیروگاه اتمی متشکل از مواد مختلفی است که همه آنها نقش اساسی و مهم در تعادل و ادامه حیات آن را دارند. این مواد عبارت اند از:

۱ _
ماده سوخت متشکل از اورانیوم طبیعی، اورانیوم غنی شده، اورانیوم و پلوتونیم است.

عمل سوختن اورانیوم در داخل نیروگاه اتمی متفاوت از سوختن زغال یا هر نوع سوخت فسیلی دیگر است. در این پدیده با ورود یک نوترون کم انرژی به داخل هسته ایزوتوپ اورانیوم
۲۳۵ عمل شکست انجام می گیرد و انرژی فراوانی تولید می کند. بعد از ورود نوترون به درون هسته اتم، ناپایداری در هسته به وجود آمده و بعد از لحظه بسیار کوتاهی هسته اتم شکسته شده و تبدیل به دوتکه شکست و تعدادی نوترون می شود. تعداد متوسط نوترون ها به ازای هر ۱۰۰ اتم شکسته شده ۲۴۷
عدد است و این نوترون ها اتم های دیگر را می شکنند و اگر کنترلی در مهار کردن تعداد آنها نباشد واکنش شکست در داخل توده اورانیوم به صورت زنجیره ای انجام می شود که در زمانی بسیار کوتاه منجر به انفجار شدیدی خواهد شد.

در واقع ورود نوترون به درون هسته اتم اورانیوم و شکسته شدن آن توام با انتشار انرژی معادل با
۲۰۰
میلیون الکترون ولت است این مقدار انرژی در سطح اتمی بسیار ناچیز ولی در مورد یک گرم از اورانیوم در حدود صدها هزار مگاوات است. که اگر به صورت زنجیره ای انجام شود، در کمتر از هزارم ثانیه مشابه بمب اتمی عمل خواهد کرد.

اما اگر تعداد شکست ها را در توده اورانیوم و طی زمان محدود کرده به نحوی که به ازای هر شکست، اتم بعدی شکست حاصل کند شرایط یک نیروگاه اتمی به وجود می آید. به عنوان مثال نیروگاهی که دارای
۱۰ تن اورانیوم طبیعی است قدرتی معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانیوم ۲۳۵ در روز در این نیروگاه شکسته می شود و همان طور که قبلاً گفته شد در اثر جذب نوترون به وسیله ایزوتوپ اورانیوم ۲۳۸ اورانیوم ۲۳۹ به وجود می آمد که بعد از دو بار انتشار پرتوهای بتا (یا الکترون) به پلوتونیم ۲۳۹ تبدیل می شود که خود مانند اورانیوم ۲۳۵ شکست پذیر است. در این عمل ۷۰
گرم پلوتونیم حاصل می شود. ولی اگر نیروگاه سورژنراتور باشد و تعداد نوترون های موجود در نیروگاه زیاد باشند مقدار جذب به مراتب بیشتر از این خواهد بودو مقدار پلوتونیم های به وجود آمده از مقدار آنهایی که شکسته می شوند بیشتر خواهند بود. در چنین حالتی بعد از پیاده کردن میله های سوخت می توان پلوتونیم به وجود آمده را از اورانیوم و فرآورده های شکست را به کمک واکنش های شیمیایی بسیار ساده جدا و به منظور تهیه بمب اتمی ذخیره کرد.

۲ _ نرم کننده ها موادی هستند که برخورد نوترون های حاصل از شکست با آنها الزامی است و برای کم کردن انرژی این نوترون ها به کار می روند. زیرا احتمال واکنش شکست پی در پی به ازای نوترون های کم انرژی بیشتر می شود. آب سنگین (D2O
) یا زغال سنگ (گرافیت) به عنوان نرم کننده نوترون به کار برده می شوند.

۳ _ میله های مهارکننده: این میله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآکتور اتمی الزامی است و مانع افزایش ناگهانی تعداد نوترون ها در قلب رآکتور می شوند. اگر این میله ها کار اصلی خود را انجام ندهند، در زمانی کمتر از چند هزارم ثانیه قدرت رآکتور چند برابر شده و حالت انفجاری یا دیورژانس رآکتور پیش می آید. این میله ها می توانند از جنس عنصر کادمیم و یا بور باشند.

۴ _ مواد خنک کننده یا انتقال دهنده انرژی حرارتی: این مواد انرژی حاصل از شکست اورانیوم را به خارج از رآکتور انتقال داده و توربین های مولد برق را به حرکت در می آورند و پس از خنک شدن مجدداً به داخل رآکتور برمی گردند. البته مواد در مدار بسته و محدودی عمل می کنند و با خارج از محیط رآکتور تماسی ندارند. این مواد می توانند گاز CO2
، آب، آب سنگین، هلیم گازی و یا سدیم مذاب باشند.

پی نوشت:
* محقق مرکز اتمی فرانسه _ دکترای دولتی فرانسه در شیمی فیزیک اتمی



غنی سازی اورانیم
سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ ۲۳۵
به مقدار ۷/۰ درصد و اورانیوم ۲۳۸ به مقدار ۳/۹۹ درصد تشکیل شده است. سنگ معدن را ابتدا در اسید حل کرده و بعد از تخلیص فلز، اورانیوم را به صورت ترکیب با اتم فلئور (F) و به صورت مولکول اورانیوم هکزا فلوراید UF6 تبدیل می کنند که به حالت گازی است. سرعت متوسط مولکول های گازی با جرم مولکولی گاز نسبت عکس دارد این پدیده را گراهان در سال ۱۸۶۴ کشف کرد. از این پدیده که به نام دیفوزیون گازی مشهور است برای غنی سازی اورانیوم استفاده می کنند.در عمل اورانیوم هکزا فلوراید طبیعی گازی شکل را از ستون هایی که جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور می دهند. منافذ موجود در جسم متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود ۵/۲ انگشترم (۰۰۰۰۰۰۰۲۵/۰ سانتیمتر) باشد. ضریب جداسازی متناسب با اختلاف جرم مولکول ها است.روش غنی سازی اورانیوم تقریباً مطابق همین اصولی است که در اینجا گفته شد. با وجود این می توان به خوبی حدس زد که پرخرج ترین مرحله تهیه سوخت اتمی همین مرحله غنی سازی ایزوتوپ ها است زیرا از هر هزاران کیلو سنگ معدن اورانیوم ۱۴۰ کیلوگرم اورانیوم طبیعی به دست می آید که فقط یک کیلوگرم اورانیوم ۲۳۵ خالص در آن وجود دارد. برای تهیه و تغلیظ اورانیوم تا حد ۵ درصد حداقل ۲۰۰۰ برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پی درپی لازم است تا نسبت ایزوتوپ ها تا از برخی به برج دیگر به مقدار ۰۱/۰ درصد تغییر پیدا کند. در نهایت موقعی که نسبت اورانیوم ۲۳۵ به اورانیوم ۲۳۸ به ۵ درصد رسید باید برای تخلیص کامل از سانتریفوژهای بسیار قوی استفاده نمود. برای ساختن نیروگاه اتمی، اورانیوم طبیعی و یا اورانیوم غنی شده بین ۱ تا ۵ درصد کافی است. ولی برای تهیه بمب اتمی حداقل ۵ تا ۶ کیلوگرم اورانیوم ۲۳۵ صددرصد خالص نیاز است. عملا در صنایع نظامی از این روش استفاده نمی شود و بمب های اتمی را از پلوتونیوم ۲۳۹ که سنتز و تخلیص شیمیایی آن بسیار ساده تر است تهیه می کنند. عنصر اخیر را در نیروگاه های بسیار قوی می سازند که تعداد نوترون های موجود در آنها از صدها هزار میلیارد نوترون در ثانیه در سانتیمتر مربع تجاوز می کند. عملاً کلیه بمب های اتمی موجود در زراد خانه های جهان از این عنصر درست می شود.روش ساخت این عنصر در داخل نیروگاه های اتمی به صورت زیر است: ایزوتوپ های اورانیوم ۲۳۸ شکست پذیر نیستند ولی جاذب نوترون کم انرژی (نوترون حرارتی هستند. تعدادی از نوترون های حاصل از شکست اورانیوم ۲۳۵ را جذب می کنند و تبدیل به اورانیوم ۲۳۹ می شوند. این ایزوتوپ از اورانیوم بسیار ناپایدار است و در کمتر از ده ساعت تمام اتم های به وجود آمده تخریب می شوند. در درون هسته پایدار اورانیوم ۲۳۹ یکی از نوترون ها خودبه خود به پروتون و یک الکترون تبدیل می شود.بنابراین تعداد پروتون ها یکی اضافه شده و عنصر جدید را که ۹۳ پروتون دارد نپتونیم می نامند که این عنصر نیز ناپایدار است و یکی از نوترون های آن خود به خود به پروتون تبدیل می شود و در نتیجه به تعداد پروتون ها یکی اضافه شده و عنصر جدید که ۹۴ پروتون دارد را پلوتونیم می نامند. این تجربه طی چندین روز انجام می گیرد.


¤ نویسنده: مرتضی آقاجانی


معرفی کتاب های مرتبط با انرژی هسته ای (یکشنبه 86/8/13 :: ساعت 1:1 صبح )

معرفی کتاب های مرتبط با انرژی هسته ای

عنوان: آشنایی با معاهده منع و گسترش سلاحهای هسته ای و پروتکل الحاقی
نویسنده:کاظم غریب آبادی

عنوان: تکنیکهای هسته ای در علوم کشاورزی
نویسنده: فرامرز مجد- محمد رضا اردکانی
ناشر: دانشگاه تهران

عنوان: تسلیحات هسته ای در جهان سوم
مترجم : امان ا... ترجمان

عنوان: مجله علوم و فنون هسته ای
سازمان انرژی اتمی ایران

عنوان: روابط هسته ای ایران و روسیه و گزینه های سیاسی آمریکا
ترجمه:موسسه فرهنگی مطالعات و تحقیقات بین المللی ابرار معاصر تهران

عنوان: بمب اتمی ایران :دیدگاههای ایران و آمریکا
ترجمه:موسسه فرهنگی مطالعات و تحقیقات بین المللی ابرار معاصر تهران

عنوان: کنترل سلاحهای کشتار جمعی
ترجمه:موسسه فرهنگی مطالعات و تحقیقات بین المللی ابرار معاصر تهران

عنوان: راه حل های واقعی برای حل بحران هسته ای ایران
ترجمه:موسسه فرهنگی مطالعات و تحقیقات بین المللی ابرار معاصر تهران

عنوان: پیامدهای جهانی دستیابی ایران به سلاحهای هسته ای
ترجمه:موسسه فرهنگی مطالعات و تحقیقات بین المللی ابرار معاصر تهران

عنوان: جایگاه تسلیحات هسته ای در تفکر اسراییل
نویسنده: حمیدی قناص الحمیدی
ناشر: دانشگاه امام حسین علیه السلام

عنوان: فیزیک کاربردی راکتورهای هسته‌ای
نویسنده: احمد داورزنی

عنوان: نیروی هسته‌ای
نویسنده: فلیکس پیرانی
ناشر: نشرمرکز

عنوان: آشنایی با فیزیک هسته ای
نویسنده: کنت کرین
ناشر: نشرمرکز

عنوان: اصول فیزیک: پزشکی هسته ای
نویسنده: چاندرا – رامش
ناشر: کتابخانه رایانه‌ای

عنوان: از هیروشیما تا نابودی جهان: اثرات زیست محیطی انفجارات هسته‌ای
نویسنده: مصباح - اشرف‌السادات
ناشر: سالمی

عنوان: تکثیر سلاحهای هسته‌ای
مترجم: علیخانی - احمد
ناشر: سپاه پاسداران انقلاب اسلامی, دوره عالی جنگ

عنوان: خطر تشعشعات هسته‌ای (بررسی حادثه انفجار راکتورهای نیروگاه هسته‌ای چرنوبیل)
نویسنده: پویی‌زو - لویی
ناشر: به‌نشر

عنوان: اصول فیزیک: پزشکی هسته‌ای
نویسنده: مصباح - اشرف‌السادات
ناشر: سالمی

عنوان: امواج الکترومغناطیسی - فیزیک اتمی و ساختار هسته نویسنده: علیرضا عربشاهی
ناشر: راه اندیشه

عنوان: از اتم تا انرژی اتمی نویسنده: مرعشی - محمدکاظم
ناشر: کتاب همراه

عنوان: انرژی اتمی نویسنده: اوبلاکر - اریش
ناشر: قدیانی, کتابهای بنفشه

عنوان: بمب اتمی گردآورنده: ریتا - اصغرپور
ناشر: گل آقا

عنوان: عواقب انفجارات اتمی ازدیدگاه پزشکی نویسنده: جیمز جی .کانکلین
ناشر: دانشگاه امام حسین(ع)

عنوان: اتم ساختار مادی جهان نویسنده: عباس دهقانیان
ناشر: پرشکوه


¤ نویسنده: مرتضی آقاجانی


چرخه سوخت هسته اى چیست؟ (یکشنبه 86/8/13 :: ساعت 1:0 صبح )

چرخه سوخت هسته اى چیست؟

اورانیومى که از زمین استخراج مى شود، بلافاصله قابل استفاده در نیروگاه هاى تولید انرژى نیست. براى آنکه بتوان بیشترین بازده را از اورانیوم به دست آورد، فرآیندهاى مختلفى روى سنگ معدن اورانیوم صورت مى گیرد تا غلظت ایزوتوپ U235 که قابل شکافت است، افزایش یابد. چرخه سوخت اورانیوم نسبت به سوخت هاى رایج دیگر، از جمله زغال سنگ، نفت و گاز طبیعى به مراتب پیچیده تر و متمایزتر است. چرخه سوخت اورانیوم را چرخه سوخت هسته اى نیز مى گویند. چرخه سوخت هسته اى از دو بخش انتهاى جلویى و انتهاى عقبى Front end) و (Back end تشکیل شده است. انتهاى جلویى چرخه، مراحلى است که منجر به آماده سازى اورانیوم به عنوان سوخت رآکتور هسته اى مى شود و شامل استخراج از معدن، آسیاب کردن، تبدیل، غنى سازى و تولید سوخت است. هنگامى که اورانیوم به عنوان سوخت مصرف شد و انرژى از آن به دست آمد، انتهاى عقبى چرخه آغاز مى شود تا ضایعات هسته اى به انسان و محیط زیست آسیبى نرسانند. این بخش عقبى شامل انباردارى موقتى، بازفرآورى کردن و انبار نهایى است.

  •  اکتشاف و استخراج

ذخایر طبیعى اورانیوم، سنگ معدن اورانیوم است که بر اساس مقدار قابل استحصال از معدن محاسبه مى شود. با تکنیک ها و روش هاى زمین شناسى، معدن اورانیوم شناسایى مى شود و نمونه هایى از سنگ معدن به آزمایشگاه فرستاده مى شود. در آنجا، محلولى از سنگ معدن تهیه مى کنند و اورانیوم ته نشین شده را مورد بررسى قرار مى دهند تا بفهمند چه مقدار اورانیوم را مى توان از آن معدن استخراج کرد و چقدر هزینه مى برد. اورانیوم موجود در طبیعت معمولاً از دو ایزوتوپ U235 و U238 تشکیل مى شود که فراوانى آنها به ترتیب ۷۱/۰ درصد و ۲۸/۹۹ درصد است. هنگامى که معدن شناسایى شد، به سه روش مى توان اورانیوم را استخراج کرد. استخراج از سطح زمین، استخراج از معادن زیرزمینى و تصفیه در معدن. دو روش نخست همانند دیگر روش هاى استخراج فلزات هستند ولى در روش سوم که در ایالات متحده استفاده مى شود، سنگ معدن در خود معدن تصفیه مى شود و اورانیوم به دست مى آید. سنگ معدن اورانیوم معمولاً از اکسید اورانیوم (U3O8) تشکیل شده است و غلظت آن در سنگ معدن بین ۰۵/۰ تا ۳/۰ درصد تغییر مى کند. البته این تنها منبع اورانیوم نیست. اورانیوم در برخى معادن فسفات با منشاء دریایى نیز وجود دارد که البته فراوانى بسیار کمى دارد، به طورى که حداکثر به ۲۰۰ ذره در یک میلیون ذره مى رسد. از آنجایى که این معادن فسفات مقادیر انبوهى تولید دارند، مى توان اورانیوم را با قیمت معقولى استحصال کرد.

  •  آسیاب کردن

پس از استخراج سنگ معدن، تکه سنگ ها به آسیاب فرستاده مى شود تا خوب خرد شده، خرده سنگ هایى با ابعاد یکسان تولید شود. اورانیوم توسط اسید سولفوریک از دیگر اتم ها جدا مى شود، محلول غنى شده از اورانیوم تصفیه و خشک مى شود. محصول به دست آمده، کنسانتره جامد اورانیوم است که کیک زرد نامیده مى شود.

  •  تبدیل

کیک زرد جامد است، ولى مرحله بعد (غنى سازى) از تکنولوژى بخصوصى بهره مى برد که نیازمند حالت گازى است. بنابراین کنسانتره اکسید اورانیوم جامد طى فرآیندى شیمیایى به هگزافلوراید اورانیوم (UF6) تبدیل مى شود. UF6 در دماى اتاق جامد است، ولى در دمایى نه چندان بالا به گاز تبدیل مى شود.

  •  غنى سازى

براى ادامه یک واکنش زنجیره اى هسته اى در قلب یک رآکتور آب سبک، غلظت طبیعى اورانیوم ۲۳۵ بسیار اندک است. براى آنکه UF6 به دست آمده در مرحله تبدیل، به عنوان سوخت هسته اى مورد استفاده قرار گیرد، باید ایزوتوپ قابل شکافت آن را غنى کرد. البته سطح غنى سازى بسته به کاربرد سوخت هسته اى متفاوت است. براى یک رآکتور آب سبک، سوختى با ۵ درصد اورانیوم ۲۳۵ مورد نیاز است، درحالى که در یک بمب اتمى، سوخت هسته اى باید حداقل ۹۰ درصد غنى شده باشد. غنى سازى با استفاده از یک یا چند روش جداسازى ایزوتوپ هاى سنگین و سبک صورت مى گیرد. در حال حاضر، دو روش رایج براى غنى سازى اورانیوم وجود دارد که عبارتند از انتشار گاز و سانتریفوژ گاز. در روش انتشار گازى (دیفیوژن)، گاز طبیعى UF6 با فشار بالا از یک سرى سدهاى انتشارى عبور مى کند. این سد ها که غشاهاى نیمه تراوا هستند، اتم هاى سبک تر را با سرعت بیشترى عبور مى دهند. در نتیجه ۲۳۵UF6 سریع تر از ۲۳۸UF6 عبور مى کند. با تکرار این فرآیند در مراحل مختلف، گازى نهایى به دست مى آید که غلظت U235 بیشترى دارد. مهم ترین عیب این روش این است که جداسازى ایزوتوپ هاى سبک در هر مرحله نرخ نسبتاً پایینى دارد، لذا براى رسیدن به سطح غنى سازى مطلوب باید این فرآیند را به دفعات زیادى تکرار کرد که این خود نیازمند امکانات زیاد و مصرف بالاى انرژى الکتریکى است و بالتبع هزینه عملیات نیز بسیار افزایش خواهد یافت. در روش سانتریفوژ گاز، گاز UF6 را به مخزن هایى استوانه اى تزریق مى کنند و گاز را با سرعت بسیار زیادى مى چرخانند. نیروى گریز از مرکز موجب مى شود ۲۳۵Uf6 که اندکى از ۲۳۸UF6 سبک تر است، از مولکول سنگین تر جدا شود. این فرآیند در مجموعه اى از مخزن ها صورت مى گیرد و در نهایت، اورانیوم با سطحى غنى شده مطلوب به دست مى آید. هر چند روش سانتریفوژ گازى نیازمند تجهیزات گرانقیمتى است، هزینه انرژى آن نسبت به روش قبلى کمتر است. امروزه فناورى هاى غنى سازى جدیدى نیز توسعه یافته است که همگى بر پایه استفاده از لیزر پیشرفت کرده اند. این روش ها که روش جداسازى ایزوتوپ با لیزر بخار اتمى (AVLIS) و جداسازى ایزوتوپ با لیزر مولکولى (MLIS) نام دارند، مى توانند مواد خام بیشترى را در هر مرحله غنى کنند و سطح غنى سازى آنها نیز بالاتر است.


 

  •  ساخت میله هاى سوخت

تولید میله سوخت، آخرین مرحله انتهاى جلویى در چرخه سوخت هسته اى است. اورانیوم غنى شده که هنوز به شکل UF6 است، باید به پودر دى اکسید اورانیوم (۲ UO) تبدیل شود تا به عنوان سوخت هسته اى قابل استفاده باشد، پودر ۲ UOسپس فشرده مى شود و به شکل قرص درمى آید. قرص ها در معرض حرارت با دماى بالا قرار مى گیرند تا به قرص هاى سرامیکى سخت تبدیل شوند. پس از طى چند فرآیند فیزیکى، قرص هایى سرامیکى با ابعاد یکسان حاصل مى شود. حال، متناسب با طراحى رآکتور و نوع سوخت مورد نیاز، این قرص هاى کوچک را دسته دسته کرده و در لوله اى بخصوص قرار مى دهند. این لوله از آلیاژ بخصوصى ساخته شده است که در برابر خوردگى بسیار مقاوم است و در عین حال از رسانایى حرارتى بسیار بالایى برخوردار است. حال میله سوخت آماده شده است و براى استفاده در رآکتور به نیروگاه فرستاده مى شود.
 

  •  انتهاى عقبى چرخه سوخت هسته اى: مدیریت زباله هاى هسته اى

در نیروگاه هسته اى هم مثل دیگر فعالیت هاى بشرى، ضایعاتى تولید مى شود که به دلیل حساسیت مضاعف زباله هاى رادیواکتیو، مدیریت این ضایعات باید تحت قوانین و محدودیت هاى خاصى صورت بگیرد. در هر هشت مگاوات ساعت انرژى الکتریکى تولید شده در نیروگاه هسته اى، ۳۰ گرم زباله رادیواکتیو به وجود مى آید. براى تولید همین مقدار برق با استفاده از زغال سنگ پرکیفیت، هشت هزار کیلوگرم دى اکسید کربن تولید مى شود که در دما و فشار جو، ۳ استخر المپیک را پر مى کند. مى بینید حجم زباله هاى رادیواکتیو بسیار کمتر است، ولى خطر آنها به مراتب بیشتر است و مراقبت از آنها ضرورى تر و دشوارتر. زباله هاى رادیواکتیو بر اساس مقدار و نوع ماده رادیواکتیو به ۳ گروه تقسیم مى شوند:
الف _ سطح پایین: لباس هاى حفاظتى، لوازم، تجهیزات و فیلترهایى که حاوى مواد رادیواکتیو با عمر کوتاه هستند. اینها نیازى به پوشش حفاظتى ندارند و معمولاً فشرده شده یا آتش زده مى شوند و در چاله هاى کم عمق دفن شده و انبار مى شوند.
ب- سطح متوسط: رزین ها، پسمانده هاى شیمیایى، پوشش میله سوخت و مواد نیروگاه هاى برق هسته اى جزء زباله هاى سطح متوسط طبقه بندى مى شوند. اینها عموماً عمر کوتاهى دارند، ولى نیاز به پوشش محافظ دارند. این زباله ها را مى توان درون بتن قرار داد و در مخزن زباله ها گذاشت.
ج _ سطح بالا: همان سوخت مصرف شده رآکتورها است و نیاز به پوشش حفاظتى و سردسازى دارند. مراحل مدیریت این ضایعات عبارتند از:
 

  •  انباردارى موقتى

سوخت مصرف شده که از رآکتور خارج مى شود، بسیار داغ و رادیواکتیو است و تشعشع و یون هاى فراوانى را مى تاباند. از این رو باید هم آن را سرد کرد و هم از تابیدن پرتوهاى رادیواکتیو آن به محیط جلوگیرى کرد. در کنار هر رآکتور، استخرهایى براى انبار کردن سوخت مصرف شده وجود دارد. این استخرها، مخزن هایى بتنى مسلح به لایه هاى فولاد زنگ نزن هستند که ۸ متر عمق دارند و پر از آب هستند. آب هم میله هاى سوخت مصرف نشده را خنک مى کند و هم به عنوان پوشش حفاظتى در برابر تابش رادیواکتیو عمل مى کند. به مرور زمان، شدت گرما و تابش رادیواکتیو کاهش مى یابد، به طورى که پس از چهل سال، به یک هزارم مقدار اولیه (زمانى که از رآکتور خارج شده بود) مى رسد.
 

  •  بازفرآورى و انبار نهایى

۳ درصد سوخت مصرف شده در یک رآکتور آب سبک را ضایعات بسیار خطرناک رادیواکتیو تشکیل مى دهد، ولى بقیه آن حاوى مقادیر قابل توجهى U-235،Pu-239 وU-238 و دیگر مواد رادیواکتیو است. این مواد را مى توان با روش هاى شیمیایى از یکدیگر جدا کرد و اگر شرایط اقتصادى و قوانین حقوقى اجازه دهد، مى توان سوخت مصرف شده را براى تهیه سوخت هسته اى جدید بازیافت کرد. کارخانه هایى در فرانسه و انگلستان وجود دارند که مرحله بازفرآورى سوخت نیروگاه هاى کشورهاى اروپایى و ژاپن را انجام مى دهند. البته این کار در ایالات متحده ممنوع است. رایج ترین شیوه بازفرآورى PUREX نام دارد که مخفف عبارت جداسازى اورانیوم و پلوتونیوم است. ابتدا میله هاى سوختى را از یکدیگر جدا مى کنند و در اسید نیتریک حل مى کنند، سپس با استفاده از مخلوطى از فسفات ترى بوتیل و یک حلال هیدروکربن، اورانیوم و پلوتونیوم مصرف نشده را جدا مى کنند و به عنوان سوخت جدید به مراحل تهیه سوخت مى فرستند. ضایعات هسته اى سطح بالا را پس از جداسازى، حرارت مى دهند تا به پودر تبدیل شود. پس از این فرآیند که آهى کردن خوانده مى شود، پودر را با شیشه مخلوط مى کنند تا ضایعات را در محفظه اى محبوس کند. این فرآیند شیشه سازى نام دارد. شیشه مایع براى ذخیره سازى درون محفظه هایى از جنس فولاد ضدزنگ قرار مى گیرند و این محفظه ها را در منطقه اى پایدار (از نظر جغرافیایى) انبار مى کنند. پس از یک هزار سال، شدت تابش هاى رادیواکتیو ضایعات هسته اى به مقدار طبیعى کاهش پیدا مى کند. این نقطه تا به امروز، انتهاى چرخه سوخت هسته اى است.

 


¤ نویسنده: مرتضی آقاجانی


آب سنگین (یکشنبه 86/8/13 :: ساعت 12:58 صبح )

آب سنگین

مقدمه

پروژه تولید آب سنگین در شمال غربی اراک و در نزدیکی تاسیسات نیروگاه ۴۰ مگاواتی آب سنگین اراک قرار دارد و برای تامین آب سنگین این رآکتور ساخته شده است. به گفته غلامرضا آقازاده رئیس سازمان انرژی اتمی ایران ظرفیت تولید این مجتمع ابتدا هشت تن بود و امروز ظرفیت آن به ۱۶ تن آب سنگین با غنای ۸۹۹ درصد رسیده است. سعیدی معاون امور بین الملل سازمان انرژی اتمی در توصیف اهمیت این پروژه گفت: این پروژه نقش بسزایی در ارتقای علمی کشور و صنایع داخلی دارد و نشانگر رشد و بلوغ و ارتقای دانش فنی نیروهای متخصص ایرانی است. پروژه مجتمع تولید آب سنگین اراک به عنوان یکی از شاخصه های دانش هسته ای، در پزشکی و به خصوص کنترل سرطان و کنترل بیماری ایدز نقش تعیین کننده ای دارد و به عنوان خنک کننده و کندکننده رآکتورهای آب سنگین به کار می رود .با گشایش این واحد صنعتی، ایران به عنوان نهمین کشور دارای تجهیزات تولید آب سنگین مطرح می شود. کشورهای آرژانتین، کانادا، هند و نروژ نیز بزرگترین صادرکنندگان آب سنگین جهان هستند.با توجه به اهمیت راه اندازی این واحد در صنایع هسته ای، در ادامه با آب سنگین و کاربردهای آن در شاخه های گوناگون آشنا می شویم.آب خالص ماده ای است بی رنگ، بی بو و بدون طعم. فرمول شیمیایی آب H2O است، یعنی هر مولکول آب از اتصال دو اتم هیدروژن به یک اتم اکسیژن ساخته شده است. نکته ای که باید در نظر داشت آن است که عنصر هیدروژن همانند بسیاری دیگر از عنصرهای طبیعت ایزوتوپ هایی دارد که عبارتند از H ۲ که با D دوتریم و H ۳که با T تریتیم نمایش می دهند. برای آشنا شدن با تفاوت این ایزوتوپ ها بهتر است یک بار دیگر ساختار اتم را به یادآوریم.


ساختار اتم

۱۸۷۰ بار سنگین تر از الکترون است، بنابر این بخش عمده جرم یک اتم درون هسته آن قرار دارد. ایزوتوپ: ایزوتوپ به صورت های گوناگون یک عنصر گفته می شود که جرم آنها با هم تفاوت داشته باشد. تفاوت ایزوتوپ های مختلف یک عنصر از آنجا ناشی می شود که تعداد نوترون های موجود در هسته آنها با هم تفاوت دارد. البته تعداد پروتون های تمام اتم های یک عنصر از جمله ایزوتوپ ها با هم برابر است. برای مثال عنصر هیدروژن دارای سه ایزوتوپ است: H هیدروژن که در هسته خود فقط یک پروتون دارد، بدون نوترون. H ۲یا D دوتریم که در هسته خود یک پروتون و یک نوترون دارد و H ۳ یا H تریتیم که یک پروتون و دو نوترون دارد. از آنجایی که خواص شیمیایی یک عنصر به تعداد پروتون های هسته مربوط است، ایزوتوپ های مختلف در خواص شیمیایی با هم تفاوت ندارند، بلکه خواص فیزیکی آنها با هم متفاوت است. عمده هیدروژن های طبیعت H یا هیدروژن معمولی است و فقط ۰۱۵۰ درصد آن را دوتریم تشکیل می دهد، یعنی از هر ۶۴۰۰ اتم هیدروژن، یکی دوتریم است. حال در نظر بگیرید که به جای یک اتم هیدروژن معمولی در مولکول آب H2O اتم D بنشیند. آن وقت مولکول HDO به وجود می آید که به آن آب نیمه سنگین می گویند. اگر جای هر دو اتم هیدروژن، دوتریم بنشیند، D2O به وجود می آید که به آن آب سنگین می گویند. خواص فیزیکی آب سنگین تا حدودی با آب سبک یا آب معمولی تفاوت دارد.با توجه به جانشینی D به جای H در آب سنگین، انرژی پیوندی پیوند های اکسیژن هیدروژن در آب تغییر می کند و در نتیجه خواص فیزیکی و به ویژه خواص زیست شناختی آب عوض می شود.


اتم کوچکترین بخش سازنده یک عنصر شیمیایی است که هنوز هم خواص شیمیایی آن عنصر را دارد. خود اتم ها از سه جزء ساخته شده اند: الکترون، پروتون و نوترون. پروتون و نوترون در درون هسته اتم قرار دارد و الکترون به دور هسته اتم می گردد. الکترون بار منفی و جرم بسیار کمی دارد. پروتون بار مثبت و نوترون بدون بار است. جرم پروتون و نوترون برابر و حدود


تاریخچه تولید آب سنگین

۱۹۲۶ با استفاده از جدول تناوبی ?مارپیچ? وجود دو تریم را پیش بینی کرد. هارولد یوری یکی از شیمیدانان دانشگاه کلمبیا در سال ۱۹۳۱ توانست آن را کشف کند. گیلبرت نیوتن لوئیس هم در سال ۱۹۳۳ توانست اولین نمونه از آب سنگین خالص را با استفاده از روش الکترولیز تهیه کند. هوسی و هافر نیز در سال ۱۹۳۴ از آب سنگین استفاده کردند و با انجام اولین آزمون های ردیابی زیست شناختی به بررسی سرعت گردش آب در بدن انسان پرداختند.
تولید آب سنگین: در طبیعت از هر
۳۲۰۰ مولکول آب یکی آب نیمه سنگین HDO است. آب نیمه سنگین را می توان با استفاده از روش هایی مانند تقطیر یا الکترولیز یا دیگر فرآیندهای شیمیایی از آب معمولی تهیه کرد. هنگامی که مقدار HDO در آب زیاد شد، میزان آب سنگین نیز بیشتر می شود زیرا مولکول های آب هیدروژن های خود را با یکدیگر عوض می کنند و احتمال دارد که از دو مولکول HDO یک مولکول H2O آب معمولی و یک مولکول D2O آب سنگین به وجود آید. برای تولید آب سنگین خالص با استفاده از روش های تقطیر یا الکترولیز به دستگاه های پیچیده تقطیر و الکترولیز و همچنین مقدار زیادی انرژی نیاز است، به همین دلیل بیشتر از روش های شیمیایی برای تهیه آب سنگین استفاده می کنند.
کاربرد های آب سنگین
آب سنگین در پژوهش های علمی در حوزه های مختلف از جمله زیست شناسی، پزشکی، فیزیک و... کاربردهای فراوانی دارد که در زیر به چند مورد آن اشاره می کنیم.
طیف سنجی تشدید مغناطیسی هسته: در طیف سنجی تشدید مغناطیسی هسته
NMR هنگامی که هسته مورد نظر ما هیدروژن و حلال هم آب باشد از آب سنگین استفاده می کنند. در این حالت چون سیگنال های اتم هیدروژن مورد نظر با سیگنال های اتم هیدروژن آب معمولی تداخل می کند، می توان از آب سنگین استفاده کرد، زیرا خواص مغناطیسی دوتریم و هیدروژن با هم تفاوت دارد و سیگنال دوتریم با سیگنال های هیدروژن تداخل نمی کند.


والتر راسل در سال


کند کننده نوترون

۹۸۹۹درصد حدود ۶۰۰ تا ۷۰۰ دلار است. گفتنی است بدون استفاده از اورانیوم غنی شده و آب سنگین هم می توان رآکتور تولید پلوتونیوم ساخت. کافی است که از کربن فوق العاده خالص به عنوان کند کننده استفاده شود از آنجایی که نازی ها از کربن ناخالص استفاده می کردند، متوجه این نکته نشدند در حقیقت از اولین رآکتور اتمی آزمایشی آمریکا سال ۱۹۴۲ و پروژه منهتن که پلوتونیوم آزمایش ترینیتی و بمب مشهور ?Fat man? را ساخت، از اورانیوم غنی شده یا آب سنگین استفاده نمی شد.


آب سنگین در بعضی از انواع رآکتورهای هسته ای نیز به عنوان کند کننده نوترون به کار می رود. نوترون های کند می توانند با اورانیوم واکنش بدهند.از آب سبک یا آب معمولی هم می توان به عنوان کند کننده استفاده کرد، اما از آنجایی که آب سبک نوترون های حرارتی را هم جذب می کنند، رآکتورهای آب سبک باید اورانیوم غنی شده اورانیوم با خلوص زیاد استفاده کنند، اما رآکتور آب سنگین می تواند از اورانیوم معمولی یا غنی نشده هم استفاده کند، به همین دلیل تولید آب سنگین به بحث های مربوط به جلوگیری از توسعه سلاح های هسته ای مربوط است. رآکتورهای تولید آب سنگین را می توان به گونه ای ساخت که بدون نیاز به تجهیزات غنی سازی، اورانیوم را به پلوتونیوم قابل استفاده در بمب اتمی تبدیل کند. البته برای استفاده از اورانیوم معمولی در بمب اتمی می توان از روش های دیگری هم استفاده کرد. کشورهای هند، اسرائیل، پاکستان، کره شمالی، روسیه و آمریکا از رآکتورهای تولید آب سنگین برای تولید بمب اتمی استفاده کردند.با توجه به امکان استفاده از آب سنگین در ساخت سلاح هسته ای، در بسیاری از کشورها دولت تولید یا خرید و فروش مقدار زیاد این ماده را کنترل می کند. اما در کشورهایی مثل آمریکا و کانادا می توان مقدار غیر صنعتی یعنی در حد گرم و کیلوگرم را بدون هیچ گونه مجوز خاصی از تولید کنندگان یا عرضه کنندگان مواد شیمیایی تهیه کرد. هم اکنون قیمت هر کیلوگرم آب سنگین با خلوص


آشکار سازی نوترینو

۱۸O H2 آبی که اکسیژن آن ایزوتوپ ۱۸O است نه ۱۶O برای انجام آزمایش اندازه گیری سرعت سوخت و ساز بدن انسان و حیوانات استفاده می شود. این آزمون سوخت و ساز را معمولا آزمون آب دوبار نشان دار شده می نامند.


رصد خانه نوترینوی سادبری در انتاریوی کانادا از هزار تن آب سنگین استفاده می کند. آشکار ساز نوترینو در اعماق زمین و در دل یک معدن قدیمی کار گذاشته شده تا مئون های پرتو های کیهانی به آن نرسد. هدف اصلی این رصدخانه یافتن پاسخ این پرسش است که آیا نوترینوهای الکترون که از همجوشی در خورشید تولید می شوند، در مسیر رسیدن به زمین به دیگر انواع نوترینوها تبدیل می شوند یا خیر. وجود آب سنگین در این آزمایش ها ضروری است، زیرا دوتریم مورد نیاز برای آشکارسازی انواع نوترینوها را فراهم می کند.
آزمون های سوخت و ساز در بدن
از مخلوط آب سنگین با


تولید تریتیم

۶ است. تریتیم در ساخت نیروگاه های گرما هسته ای کاربرد دارد


هنگامی که دوتریم رآکتور آب سنگین یک نوترون به دست می آورد به تریتیم ایزوتوپ دیگر هیدروژن تبدیل می شود. تولید تریتیم به این روش به فناوری چندان پیچیده ای نیاز ندارد و آسان تر از تولید تریتیم به روش تبدیل نوترونی لیتیم


¤ نویسنده: مرتضی آقاجانی


آب سنگین چیست (یکشنبه 86/8/13 :: ساعت 12:57 صبح )

آب سنگین

آب سنگین نوع خاصی از مولکولهی آب است که در آن یزوتوپهی هیدروژن حضور دارند. ین نوع از آب کلید اصلی تهیه پلوتونیوم از اورانیوم طبیعی است و به همین دلیل تولید و تجارت آن تحت نظر قوانین بین المللی صورت گرفته و بشدت کنترل می شود.

با کمک ین نوع از آب می توان پلوتونیوم لازم بری سلاح هی اتمی را بدون نیاز به غنی سازی بالی اورانیوم تهیه کرد. از کاربردهی دیگر ین آب می توان به استفاده از آن در رآکتورهی هسته ی با سوخت اورانیوم، بعنوان متعادل کننده (Moderator) به جی گرافیت و نیز عامل انتقال گرمی رآکتور نام برد.

آب سنگین واژه ی است که معمولا به اکسید هیدروژن سنگین، D2O یا 2H2O اطلاق می شود. هیدروژن سنگین یا دوتریوم (Deuterium) یزوتوپی پیدار از هیدروژن است که به نسبت یک به 6400 از اتمهی هیدروژن در طبیعت وجود دارد. خواص فیزیکی و شیمییی آن به نوعی مشابه با آب سبک H2O است.

اتم هی دوتریوم یزوتوپ هی سنگینی هستند که بر خلاف هیدروژن معمولی، هسته آنها شامل نوترون نیز هست. جیگزینی هیدروژن با دوتریوم در مولکولهی آب سطح انرژی پیوند هی مولکولی را تغییر داده و طبیعتآ خواص متفاوت فیزیکی، شیمییی و بیولوژیکی را موجب می شود، بطوری که ین خواص را در کمتر اکسید یزوتوپی می توان مشاهده کرد. بعنوان مثال ویسکوزیته (Viscosity) یا به زبان ساده تر چسبندگی آب سنگین به مراتب بیشتر از آب معمولی است.

آب نیمه سنگین
چنانچه در اکسید هیدروژن تنها یکی از اتمهی هیدروژن به یزوتوپ دوتریوم تبدیل شود نتیجه حاصله (
HDO) را آب نیمه سنگین می گویند. در مواردی که ترکیب مساوی از هیدروژن و دوتریوم در تشکیل مولکوهی آب حضور داشته باشند، آب نیمه سنگین تهیه می شود. دلیل ین امر تبدیل سریع اتم هی هیدروژن و دوتریوم بین مولکولهی آب است، مولکول آبی که از 50 درصد هیدروژن معمولی (H) و 50 درصد هیدروژن سنگین(D) تشکیل شده است، در موازنه شیمییی در حدود 50 درصد HDO و 25 درصد آب (H2O) و 25 درصد D2O خواهد داشت.

نکته قابل توجه آن است که آب سنگین را نبید با با آب سخت که اغلب شامل املاح زیاد است و یا یا آب تریتیوم (T2O or 3H2O) که از یزوتوپ دیگر هیدروژن تشکیل شده است، اشتباه گرفت. تریتیوم یزوتوپ دیگری از هیدروژن است که خاصیت رادیواکتیو دارد و بیشتر بری ساخت موادی که از خود نور منتشر می کنند بکار برده می شود.

آب با اکسیژن سنگین
آب با اکسیژن سنگین، در حالت معمول
H218O است که به صورت تجارتی در دسترس است ببیشتر بری ردیابی بکار برده می شود. بعنوان مثال با جیگزین کردن ین آب (از طریق نوشیدن یا تزریق) در یکی از عضوهی بدن می توان در طول زمان میزان تغییر در مقدار آب ین عضو را بررسی کرد.

ین نوع از آب به ندرت حاوی دوتریوم است و به همین علت خواص شیمیی و بیولوژیکی خاصی ندارد بری همین به آن آب سنگین گفته نمی شود. ممکن است اکسیژن در آنها بصورت یزوتوپهی O17 نیز موجود باشد، در هر صورت تفاوت فیزیکی ین آب با آب معمولی تنها چگالی بیشتر آن است.

تاریخچه
هارولد یوری (
Harold Urey , 1893-1981، شیمیدان و از پیشتازان فعالیت روی یزوتوپها که در سال 1934 جیزه نوبل در شیمی گرفت.) در سال 1931 یزوتوپ هیدروژن سنگین را که بعد ها به منظور افزیش غلظت آب مورد استفاده قرار گرفت، کشف کرد.

همچنین در سال 1933، گیلبرت نیوتن لوئیس (Gilbert Newton Lewis شیمیدان و فیزیکدان مشهور آمریکیی) استاد هارولد یوری توانست بری اولین بار نمونه آب سنگین خالص را بوسیله عمل الکترولیز بوجود آورد.

اولین کاربرد علمی از آب سنگین در سال در سال 1934 توسط دو بیولوژیست بنامهی هوسی (Hevesy) و هافر(Hoffer) صورت گرفت. آنها از آب سنگین بری آزمیش ردیابی بیولوژیکی، به منظور تخمین میزان بازدهی آب در بدن انسان، استفاده قرار دادند.

 


¤ نویسنده: مرتضی آقاجانی



لیست کل یادداشت های این وبلاگ

»» منوها
[ RSS ]
[خانه]
[درباره من]
[ارتباط با من]
[پارسی بلاگ]
بازدید امروز: 4
بازدید دیروز: 3
مجموع بازدیدها: 21613
 

»» درباره خودم
 

»» آرشیو نوشته های قبلی
 

»» لوگوی خودم

 

»» اشتراک در وبلاک
 
 

»» دوستان من